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We start with a example of assembler programming, and show how even at this low level the structure of the pro-
gramming language does not directly mirror the structure of the hardware, but that it is also decisively influenced
by the human practices surrounding computer use, and that assembly language gives a view of the hardware
which is accommodated to human interests and capabilities. We give several historical examples and illustrate
the changing pattern of mutual accommodation between human practices and computer technology, and argue
for a more explicitly dialectical and critical approach to the history and philosophy of programming.

1. Prelude: the history of programming
There is a dominant preconception in the study of computation, which holds that the

essentials of the design of computer hardware are specified as something like Turing
machines, but that, in contrast, the design of computer software (from programming lan-
guages on up) allows for much more variation and choice: it is almost as if hardware is part
of nature, whereas software is produced by culture. We will argue that this preconception
is misleading: that both sides of the divide are equally cultural. Our main argument will be
historical: we will aim to show that the evolution of both sides is far more intricate than
people generally suppose, and that, correspondingly, the interactions between the two sides
are far more complex than one would imagine.

First, though, we should start with something on the history of programming.1

1.1. The first programming languages
In the early days of computers, programming was done either by manipulating plugs

and wires, or by directly writing machine instructions in binary: both of these were dif-
ficult and error-prone. Programming languages were invented to allow programmers to
write in a more comprehensible form: even in the 1940s, languages were developed which
allowed programmers to use abbreviated names for commands rather than binary machine
code (Wheeler 1992, Haigh et al. 2014b). Such languages are now known as assembler
languages, and they represent the least abstract level of programming language design.

Fortran dates from 1954, and made it possible to write programs in a notation very like
that of standard mathematics (Backus 1981). Although the Fortran designers paid very little
attention to theory—Backus, the leader of the project, says ‘we simply made up the lan-
guage as we went along’ (Backus 1981, p. 30)—both syntax and semantics soon became
important factors in the design of programming languages. More abstract languages fol-
lowed: Algol was designed over the period 1958–1960 (Naur 1981, Perlis 1981), Lisp
from 1958 to 1962 (McCarthy 1981), and many of the difficulties of developing these
languages were due to two factors: it was difficult to define the syntax of a language at

1 More detail on this side of things, especially a description of the philosophy of programming languages, is given in White 2004.
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all precisely, and the semantics of these languages seemed utterly mysterious. The latter
was an extremely serious problem: without some sort of semantics, it was hard to say
what counted as a correct implementation of these languages. Although Lisp eventually
achieved a precise semantics, it was designed by starting from the implementation and
then attempting to find mathematical structure in the resulting language: several of the
Lisp primitives were called after hardware features of the machine that it was originally
implemented on (McCarthy 1981, p. 175), whereas its original semantics was ‘ramshackle’
(Landin 2000). Nevertheless, it was also possible to see that the rewards for a precise
syntax—or, more ambitiously, a precise semantics—were extremely high: Algol ‘proved
to be an object of stunning beauty’ (Perlis 1981, p. 88).

What, then, do these programming languages look like? We will describe a generic lan-
guage, quite similar to Algol; since Algol has had an enormous influence on language
design its features can be found in many others. These languages have some similarity to
formal languages like first-order logic: like these languages, they have variables, to which
values can be assigned, and they have both predicates and functions. And many of the basic
operations of programming can be viewed as the assignment of values to variables, so one
might think that these operations, too, could be viewed in this way.

There are, however, differences, of which the most important one is that programming
languages allow programs to perform actions that change the values of variables, or which
have other irreversible effects (e.g. input or output); we say that these actions have side
effects.

1.2. The importance of semantics
Possibly the most important fact about the language—hardware relation is that it is sub-

ject to norms: programming languages, of course, are normed simply because they have
syntax, but, on the other hand, hardware too should be built according to a design—what is
sometimes called an ‘architecture’—and the language should be designed to fit the archi-
tecture, rather than merely to work on a particular physical implementation of the hardware
architecture. Otherwise, one risks having one’s software depend on accidental, unintended
properties of the hardware: Brooks describes a historical case during the development of
IBM hardware:

In an unpoliced system all kinds of side effects may occur, and these may have
been used by programmers. When we undertook to emulate the IBM1401 on Sys-
tem/360, for example, it turned out that there were 30 different ‘curios’ – side
effects of supposedly invalid operations – that had come into widespread use and
had to be considered as part of the definition [of the IBM1401 hardware].2

This two-sided normativity makes the hardware–software relation much more complex
than is generally supposed.

2. Three surprises
We start our investigation of the hardware–software relation by introducing the concep-

tual issues. The author came to appreciate them as a consequence of teaching assembly
language in an introductory computer architecture course: this section could, then, be
described, by those with a tolerance for such terminology, as autoethnography.

We are told—in fact, if, like me, ‘we’ teach computer architecture, we tell people—that
computer languages can be either high level or low level, and that the low level ones,

2 Brooks 1995, Chapter 6.
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specifically the various assembly languages, all reflect more or less directly the configura-
tion of the hardware. Furthermore, you might expect the hardware to implement something
very like a von Neumann architecture, or maybe even a Turing machine (apart from the
obvious concessions to finiteness), so that you would also expect that the fundamental
architecture of a computer would not have changed much since the early days: thus, for
example, Ceruzzi (2000) writes

The basics of [the UNIVAC] design remained remarkably stable during the evo-
lution of computing from 1945 to 1995. Only toward the end of this period do
we encounter significant deviations from it, in the form of ‘massively parallel’
processor or ‘non-von Neumann’ architectures.

So it comes as a bit of a shock when, in such teaching, our students get to know a particular
assembly language—I am thinking specifically of MIPS32 (Farquhar and Bruce 1994)—
and write programs which are sequences of instructions, and they are tempted to believe
that the hardware will execute the instructions in the order that we write them in, but no: if
there is a branch instruction, which tells the computer, depending on the equality or other-
wise of two numbers, to resume execution from some other instruction it will not execute
the branch right then but only when the instruction after the branch has been executed
(Hennessy and Patterson 2014, A-59) (This is because a branch takes a comparatively
long time to execute, so the computer might as well have something to get on with while it
does so.).

So that, then, is surprise 1. Now students, in such a situation, generally learn assembler
by working on a simulator, rather than by actually executing the code on the appropri-
ate hardware: and surprise 2 is that, with the simulator,3 you have a choice of whether it
gives you this rather unintuitive behaviour or not. So you can choose between a simulator
which simulates the hard-to-learn behaviour of the real hardware, or the somewhat easier
behaviour of fictitious hardware. Clearly, the question of ‘what is the real hardware’, or
‘what is the real low level’, is not as straightforward to answer as we, or our students,
might like to think.

We shall be arguing in this paper that this phenomenon is quite typical: at the low level
of assembly programming, you might expect that human factors are rather minimally in
play, if they are in play at all, and that the programming language somewhat directly mir-
rors what the hardware does. But not so: humans who work with computers at this level
are presented with a carefully achieved view of what the hardware is doing, and it would
be an oversimplification to imagine that this view was a direct presentation of the hard-
ware. To some extent this is inevitable: modern computer hardware, and especially central
processing unit (CPU) chips, is extraordinarily complex, most of it is designed by com-
puter programs, and nobody can have any sort of overview of what the CPU actually does.
Furthermore, the behaviour of modern computers is nondeterministic and chaotic, so that
we cannot predict their behaviour, at least in the short term. If you deal with this non-
determinism in its own terms (measuring the statistics of hard disc access, caching and
the like), then you are an electronic engineer and not a computer scientist: Hennessy and
Patterson 2012 will give you a good idea of what this entails.

But there is also a role for computer scientists, namely the people who design and imple-
ment algorithms, design higher level programming languages, database systems, and the
like. For this, one needs a rather more abstract view than the one given by electronic engi-
neering. As it happens, the programming models that computer scientists use (students,

3 Specifically, this one http://spimsimulator.sourceforge.net/

http://spimsimulator.sourceforge.net/
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obviously, but also professionals) present computers to them as something vaguely like
Turing machines: however, in reality, the computers themselves are not Turing machines,
but something much stranger.

The ability to negotiate this translation between the hardware and the programmer’s
idealisation of it is one of the things that makes computer science a useful profession.
For a current example of this, we can consider multicore processors: these are genuinely
concurrent machines, and the standard problems of concurrency arise (avoiding dead-
lock, making sure that the processors’ views of data are consistent with each other). Most
programmers find genuine concurrent programming extraordinarily difficult, so the ideal
would be to design a programming language in which one could program concurrent
machines as if they were standard, sequential machines. This is probably unachievable:
these are genuinely hard issues. However, dealing with them—by finding programming
tools with which normal programmers can program concurrent machines—is probably the
key to having conceptual models of modern computers that humans can, in some way,
program.

Which brings us to surprise 3. We might like to think that the sophisticated intellectual
background behind modern programming languages took a long time to arrive, just as it
took a long time to get from small, old, slow hardware to modern, fast, capable hardware.
Furthermore, we think, the initial state was one of great simplicity, and was firmly rooted
in hardware which in turn implemented the fundamental ideas derived from Turing’s work.
Now a great deal of the early work on computers was certainly very hardware-focussed—
for example, Mauchly’s description of the EDVAC was basically a description of the
machinery, with some indication of the functional roles of its parts (Bergin 2014)—but,
as we find from Priestley 2008, Haigh 2015, Daylight n.d. and Nofre et al. 2014, a great
deal of that intellectual infrastructure was in place very early, by the 1950s or early 1960s
at least, Turing was in some ways peripheral to the early developments, and the initial state
of computation was hardly simple (although as De Mol and Bullynck 2012 document, the
aspiration to simplicity was part of the intellectual milieu in which computer science was
developed).

What we have, then, is a system with three components: the human designers and pro-
grammers, the hardware, and the software and assembly languages that present a view of
the hardware to the programmers. It would be tempting to think of the relationship between
these components as rather simple (programmers write programs, software translates pro-
grams into machine code, and the hardware runs the code), and it would also be tempting to
think of these relationships as fixed and somehow given a priori (presumably they sprang
fully formed from the head of Turing). It is, on the contrary, a system that is constantly
under strain, mostly due to ongoing rapid progress in technology coupled with the rather
stable nature of programming language design. Consequently, the picture that emerges is
of continuous frantic improvisation in order to present the same (or nearly the same) view
to programmers while the underlying hardware is constantly in flux.

I shall be arguing for an egalitarian picture of these relationships: that is, that none of
the components is completely constrained by the others. For example, Galloway (2011,
p. 64) writes that ‘digital software-hardware environments, including robust and success-
ful ones, are . . . likely to be underdetermined with respect to their potential use’; there
are always ‘tacit usage skills’ in a community of users, which makes it desirable to con-
duct ‘[e]thnomethodological observation of expert users and their systematic “misuses” or
adaptations of programs or environments’ (Galloway 2011, p. 64). The difficulty becomes
more acute when the context of use lies in the past, when ‘there is almost never a perfect
meshing between the environment in which a digital object is rendered today and as it was
created in another environment’ (Galloway 2011, p. 64).
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Innovation in such mixed systems does not pass only in the direction from designers to
users: for example, Tin (2011, pp. 75f) describes how, in Taiwan in the 1980s,

users tinkered with newly introduced microcomputer technology and participated
in shaping the physical make up and social meaning of microcomputers.

Similarly, Ensmenger (2009, p. 88) describes software maintenance as ‘as much a social
as a technological endeavour. Usually what needs to be “fixed” is the ongoing negotiation
between the expectations of users, the larger context of use and operation, and the features
of the software system in question’. Interestingly, much of this maintenance is a ‘[response]
to changes in the business environment’; so the problems that maintenance deals with are
not problems solely in the hardware or software components of the system, but can also
originate with changes in the human environment. Furthermore, the innovation required
can often be a change in existing social or cultural systems. Russell, for example, describes
how open standards, such as the Open Systems Interconnection model, were introduced in
conscious critique of the existing closed, proprietary culture of development and imple-
mentation: ‘ISO’s identity and structure embodied a critique of the existing order in which
market actors were anything but equal partners’ (Russell 2012, p. 78).

Conversely, the improvisation and adaptation can present a new view to programmers on
existing hardware: Haigh et al. (2014a) describe how Adele Goldstine, von Neumann and
others reconfigured the hardware of the ENIAC—a machine which was built before more
‘modern’ machines such as EDVAC or the Manchester Baby—so that it ‘emulated (to use
an anachronistic term) the von Neumann architecture’ (Haigh et al. 2014a, p. 50). The term
‘emulate’ is certainly anachronistic, and the agents of this reconfiguration would doubtless
have viewed it as merely a piece of opportunistic improvisation: but nevertheless it opened
up a distinction between the hardware an sich and how it was presented to programmers,4

a distinction which was to become ever more important as computing developed.
A fortiori, I shall definitely not be viewing the universal Turing machine as an idea

which dropped from heaven, and which was then triumphantly implemented in both hard-
ware and the design of programming languages. The prevalence of Turing machines in
textbooks of computability is precisely that: it is the permanence of an abstract model of
computation with a well-developed metatheory. Furthermore, Turing had more ideas than
that, those other ideas were also influential, and ideas other than Turing’s were influential.
The connection between computers and universal Turing machines was not appreciated by
many of Turing’s contemporaries (Priestley 2008, Haigh 2015). And, although the idea
of the Turing machine has had a considerable influence on, for example, language design,
modern computers are not in any simple way Turing machines, as we will come to see
later.

Furthermore, this history is very important: none of these phenomena can escape history.
For all of his well-deserved influence, modern programming languages and programming
practice deviate quite markedly from Turing’s own ideas: for example, Turing was extraor-
dinarily attached to the idea of self-modifying code (Priestley 2008, Section 3.4), an idea
of the attractiveness of which is hard to appreciate from the current perspective, and
which was, in any case, radically circumscribed in von Neumann’s design (Haigh et al.
2014b).

3. Methodology
There will be a historical component to this argument, and my own picture of this his-

tory has been much influenced by the work of Mark Priestley and his colleagues: see, for

4 Gobbo and Benini (2013) have a rather attractive semi-formal account of this distinction.
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example, Priestley 2008, Haigh 2015, Daylight n.d., Nofre et al. 2014 and De Mol and
Bullynck 2012. My own methodology, however, will deviate from Priestley’s: I shall be
somewhat influenced by Garfinkel’s ethnomethodology (Garfinkel 1967), and, in particu-
lar, his picture of social action as being continually constituted by the active intervention
of its participants.

What Haigh et al. (2014a, p. 42) describe as ‘user-driven innovation’ can be use-
fully regarded as such active intervention, although the ethnomethodological perspective
is somewhat wider: user-driven innovation is rooted in the design community, whereas
ethnomethodologists would regard these processes of constitution as being pervasive in
human interaction, whether the activity was one of design or not. However, I will not be
directly using ethnomethodological methods: for one thing, many of my examples are his-
torical and not open to direct research, and, for another, my underlying model, with the
three components of people, software and hardware—or, to be pedantic about agency, of
computer users and programmers, of software designers, and of electronic engineers—is
different from, and somewhat more complex than, Garfinkel’s. (In particular, the role in
this improvisatory process of one of these groups—namely the electronic engineers—is
not solely driven by the constitution of their own viewpoint but by enabling the computer
programmers and users to constitute theirs, that is, to arrange matters so that users and
programmers can continue as before.) However, the underlying intuition is very much the
same: namely that the coherence of concepts and practices can only be sustained by the
continuous active intervention of the actors in the process.

I will, to a great extent, be telling this story from the point of view of programmers, rather
than electronic engineers, and so I will be treating the hardware in a somewhat unanalysed
fashion (in particular, I will neglect the extent to which the electronic engineers’ view of
hardware is itself an abstraction). This neglect is for a variety of reasons: life is finite,
for one, I understand the software side much better, for another, and, finally, if you want
information on how the design perspective looks from the hardware side you can get a
good idea from Hennessy and Patterson (2012, 2014), which are wonderful resources. I
shall also cite Stallings 2013 to cross-check what Hennessy and Patterson say.

Some of the explanation—of, for example, the semantics of variables—might seem to be
elementary from the point of view of practising computer scientists, but these explanations
should be read as phenomenology, not as science: these concepts may, from a professional
viewpoint, seem elementary, but they are neither necessary nor obvious. They have been
constructed historically, and they are not the only conceptual structure that one could use
to found a discipline of electronic computation.

For information on community practice—the community being that of programmers and
designers of hardware and software systems—I shall rely to some extent on textbooks for
an account of the community view of particular technologies: in particular, I shall rely on
Hennessy and Patterson 2014 for an account of the current state of hardware and of good
practice in assembly programming. I have found Wikipedia useful for information on the
community view of these matters (the relevant articles in Wikipedia are quite often written
by members of the community), although, because of the conventions of journal articles,
Wikipedia is very difficult to cite.

In the following sections, the predominant argument will be to develop examples which
undermine the following constellation of ideas: that there is a unidirectional set of influ-
ences from hardware to software to user practice, that low-level languages directly mirror
hardware, that the constraints that hardware design has to accommodate come solely from
physics and engineering, and that there are no normative concepts at work in low-level
descriptions of computation.

There will be a number of pedantic footnotes, which the reader may safely skip.
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4. The semantics of numbers
I shall take it that at least some programs are written in order to implement algorithms,

and that, correspondingly, they have a semantics: numerical variables and constants in a
program will correspond to numbers in the algorithm, and, depending on the algorithm,
arithmetical operations can be applied to them, they can be tested for equality, and so
on. Elucidating this semantics is part of the more general task of defining a mathemati-
cal semantics of programs (see Priestley 2008, Section 4.9; White 2004); this semantics
is mathematically complex, but I shall mostly be concerned here with an informal con-
cept along the lines of ‘what the programmer intends when they are writing the program’
(an informal concept which could, in principle, be elucidated by asking the programmer
what, for example, a particular variable represents, or what a particular command does to
a particular variable).

We should notice, however, that the ‘numbers’ which are the semantic values of vari-
ables may not actually have the standard mathematical properties which we expect. For
example, the IEEE standard for floating point numbers (IEEE Computer Society 2008)
defines the following entities:

(1) a finite set of (representations of) floating point numbers: these correspond one to
one with a finite set of mathematical real numbers, except that +0 is not the same
as −0,

(2) +∞ and −∞ (not equal to each other),
(3) NaN, which stands for ‘not a number’.

We expect there to be only a finite set, because, after all, computers are finite. The non-
equality of +0 and −0 is quite strange, and breaks some of the fundamental properties of
numbers as we know them.5 The two infinities are included because we want these numbers
to be closed under arithmetic operations, performed under a computer: consequently, 1

0

should evaluate to +∞, and − 1
0 should evaluate to −∞. Similarly, 0

0 should evaluate to
NaN.

This seems a little odd, especially because this representation contains something which
describes itself as ‘not a number’. Furthermore, integers are generally represented in
computers without the difference between +0 and −0. Why the difference? Number repre-
sentations are never uniquely determined: in practice, choosing the correct one will depend
on choosing which representation optimises factors such as speed and memory use.6 Nowa-
days, in comparison with earlier periods, memory is very cheap,7 so, as far as number

5 For example, that if x + y = x + z, then y = z: taking here x = 1, y = +0, and z = −0, we have x + y = x + z = 1, but

y �= z.
6 One should note that the situation for the designer deciding on number representations is somewhat complex, and more or less

as follows. Modern hardware implements unsigned binary integers, with the standard operations. Given this, there are basically

three choices for the representation of signed integers – sign and magnitude, ones’ complement, and twos’ complement –

and, of these, twos’ complement is, by general consensus, optimal and is the one that is used. Floating point arithmetic is

generally performed in special-purpose hardware: there are many choices which could be made, but there is a standard (IEEE

Computer Society 2008) which is widely implemented in that special-purpose hardware, which is taken for granted by large

software libraries, and which consequently is solidly entrenched. It is not universally followed, however: the programming

language Java had rather non-standard floating point implementations, and there has been over a decade of wrangling in the

Java community about what to do about it (see Java Numerics 2013).
7 Especially in comparison with the very early days, when, as Haigh et al. 2014b, p. 6 write,

Memory technologies were, as these comments remind us, the dominant challenge facing computer builders in the late

1940s. Discussions of drums, delay lines, Selectrons, cathode ray tubes, wire recorders, and phosphor discs occupied

a central place in the first computing texts and conferences.
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representations go,8 optimising memory use is not a decisive criterion. Speed, however, is.
Now any particular choice of number representation will speed up some calculations and
slow down others. So, in practice, optimising number representations depends on finding
out which calculations are performed most (Hennessy and Patterson 2014, p. 11): it is, in
part, an empirical matter. And (with commonly used programs as they are usually written)
the most frequent operations with integers are not the same as the most frequent operations
with floating point numbers. To be specific, one of the most common operations with float-
ing point numbers is evaluating inequalities, that is, finding whether one number is less
than another or not.9 So floating point representations are chosen so that, if we regard the
two floating point numbers as simply sequences of zeroes and ones, and if we regard those
sequences as (unsigned) integers, then the two floating point numbers will have the same
inequality relations as the ‘underlying’ integers, and evaluating the integer inequality will
be faster (Hennessy and Patterson 2014, p. 199). But this representation has, as a side-
effect, the inequality of the representations of +0 and −0; this has side effects elsewhere,
of course, but the price is generally regarded as worth paying.

The strange item NaN is easy to explain if we realise that it is the result that you get if
you attempt an operation on numbers which does not produce a numerical output (dividing
zero by zero, adding +∞ to −∞, and the like). That is, it stands for things that ought to
be numbers, but which are not: it is thus a normative concept.

4.1. Accommodations
So, we have two surprising results here: one is the occurrence of normative concepts

among integer representations, and the other is the dependence of the design decisions on
the human activity of writing programs (in particular, on the question of what floating point
operations are executed the most by the programs that humans generally write).

We can see, here, all three components of the system at work. The hardware gives
us implementations of basic operations: (which may or may not include floating point).
Software uses these operations, and software is written in response to human needs. The
process of optimising these systems feeds back from software to hardware: if your floating
point is implemented in hardware, then that hardware will be designed according to con-
straints which come, in part, from human needs, and also, in part, from the characteristics
of programs that humans write. Similarly, the NaN items are traces of human normative
concepts (we would like our calculations to give answers) implemented in hardware.

5. Variables and memory addresses
One of the key ideas in programming is the idea of a variable: there are basically two

stories to tell about it, one being about the idea of a variable in general, the other being
the idea of a variable in assembly language programming. We will tell the first story first,
because these ideas we will be more familiar to the modern audience: nevertheless, there
are certain distinct features of variables in assembler, which will also describe.

5.1. In general
In modern terms, a variable10 is an object which has a name and which can contain a

value (Watt 1990, pp. 37f). Variables can receive values, or have their values changed, in

8 Of course, memory use can be a factor when we are dealing with large data structures distributed in memory: see Chilimbi 2001.
9 By contrast, we want to test whether integers are equal to zero, rather than testing whether one is less than another. The

difference arises because the most frequent computations made are the ones that we use to test whether a loop has terminated

or not: with integer calculations, these tests are done by evaluating equalities, whereas with floating point calculations we do it

with inequalities, because floating point calculations are susceptible to rounding errors, and, consequently, equalities between

floating point numbers will very rarely hold: we test, then, for approximate equalities, which comes down to testing inequalities.
10 To be precise, a variable in a declarative programming language such as C or Java.
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assignment statements, which are usually written with an equality sign, thus:

x = x + 1.

These variables have the following properties, which distinguish them from mathemati-
cal variables as generally understood.

(1) Variables have scope: they are declared at a particular point in the program, which
will in general be inside a programming construct (a loop body, a method body,
and so on). Variables remain in existence so long as they remain in scope.

So, we can make the following distinction. Consider a single location m in
memory at two different points in the program: there are two cases:

(a) The location holds the value of a variable x, which is in scope at both
points.

(b) There is no variable which is in scope at both points whose value is stored
at the memory location.

(2) Variables can change their values: for example, the assignment statement
x = x+1 increases the value of the variable x by 1.

(3) Different variables can stand for the same value. Note that, if we have two vari-
ables with the same value, we can meaningfully ask whether that value is stored in
the same area of memory: we can just change the value of one of the variables and
see whether the value of the other changes.11

Correspondingly, Java (for example) has two ways of testing the equality of vari-
ables. x.equals(y) will test whether the values are the same: x = = y will
test whether the values are the same and are stored in the same place in memory. So
Java has an abstract concept of memory locations, and can test for their equality:
C, which is rather more low level, allows access to addresses in memory, which
Java does not do. These properties motivate the common description of a variable
as ‘an area of memory with a name attached’: of course, one can give more or
less abstract semantics to the idea of an area of memory, so it is not as low level a
description as it might appear to be.

We should contrast these properties with two other ways of calculating with values:
Turing machines considered in themselves (what we may call bare Turing machines), and
variables in mathematics.

Bare Turing machines do not have these properties. Turing machines certainly have
tapes, and locations in the tape store values, which can be read or written. But locations of
the tape do not have names (in fact, although the locations are arranged in order along a
tape with a beginning but no end, and so implicitly can be numbered, even these numbers
are not available to the machine, which only knows about tape movements relative to
its current position). Furthermore, although a Turing machine can read and write to the
tape, there is no concept of variable scope, and neither is there a concept of updating the
same entity which we have when we update a variable. If a Turing machine writes to a
tape location, this could correspond to updating a value in the algorithm which the Turing
machine program implements, but it could equally well be the replacement of a temporary
value with another unrelated temporary value. And there is no way that we could simply
look at the hardware and find out which of these possibilities had occurred.

11 We are here ignoring the difference between values on the stack and values on the heap (in Java terms, between primitive

types and reference types).
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Of course, we could implement, on a Turing machine, a programming language which
could do all this: but the implementation would be able to do these things because it was
an implementation of a programming language with the appropriate semantics.12

Variables in programming languages are also not the same as variables in mathematics,
since they can be updated, and mathematical entities, whatever they are, do not change.
These equality signs do not stand for mathematical equalities: they are not symmetric, for
example (the assignment statement x+1 = x does not make sense, because x+1 is
not a variable, although x is).

5.2. The history of the concept of variables
How did we get here? This is quite a complex body of theory and practice, and its history

has not really been written. However, we can say a few things.
One possible source for the idea of updating variables is the practice of numerical anal-

ysis, that is, the systematic calculation of solutions to mathematical equations. Much of
numerical analysis is concerned with progressive approximation to, for example, the value
of an integral, or to an irrational number: one would start with a rough approximation and
then progressively improve it, using something like Newton’s method. Although numbers
are mathematical entities, and thus cannot change, there is a very good sense in which one
can talk about changing, or updating, an approximation to a number; one can see this at
work in old textbooks of numerical analysis, which frequently have quite detailed instruc-
tions about how to lay out such calculations on a page (Hartree 1952, Southwell 1940).13

Locations on paper would here be the precursors of areas of memory; in the case of relax-
ation methods, the values in a table row would be the values successively held by a memory
location.

Now early electronic computers were widely used for carrying out numerical calcula-
tions of this sort (Priestley 2008, Nofre et al. 2014)—indeed the early computation groups
consulted established numerical analysts such as Hartree, who himself was quick to recog-
nise the value of electronic computers (Medwick and Mahoney 1988)—and the practice of
numerical analysis was, in fact, referred to by early computing researchers: Howard Aiken
and Grace Hopper write, describing the design of an early computer, that

The development of numerical analysis . . . [has] reduced, in effect, the processes
of mathematical analysis to selected sequences of the five fundamental operations
of arithmetic: addition, subtraction, multiplication, division, and reference to tables
of previously computed results. The automatic sequence controlled calculator
was designed to carry out any selected sequence of these operations under com-
pletely automatic control. (Aiken and Hopper 1946, p. 386, cited in Priestley 2008,
p. 92)

and so it is not inconceivable that the idea of a variable was at least partly influenced by
the practice of numerical analysis.

12 Namely those described in O’Hearn and Tennent 1997a,b.
13 For example, see Hartree 1952, p. 9

Numerical work should not be done on odd scraps of rough paper, but laid out systematically and in such a way as

to show how the intermediate and final results were obtained: and the numbers entered on the work sheet should be

written neatly and legibly. Use of ruled paper is a help in keeping the layout of the work neat and clear.

And Southwell (1940, p. 10, Table 2) has a table showing a number of numerical values which are to be calculated, and, for

each of them, the sequence of arithmetic operations which yield progressive approximations to that value.
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We should also notice that numerical analysts would (then, and probably subsequently)
talk of numbers changing, by which they meant not the way that a time series could repre-
sent the changing value of a physical quantity, but the way that successive approximations
to a single numerical value would change. Thus, Hartree writes

a change in the estimate of δ2y′
0 by ε makes a change 1

12 (δx)2 in y1,

and Wilkes similarly writes

it will be assumed that the quantities y0 and y1 are held in the store of the machine
in ‘storage locations’ numbered 100 and 101 respectively, and that storage location
102 contains a number η. η will change as the calculation proceeds, and will finally
become equal to y2.14

Thus, we have the following set of ideas: ‘numbers’ are what memory locations contain,
and these entities can change.

And, in fact, early computers had quite a lot of support for performing computations of
this sort. This is hardly surprising, since, as we have seen, one of their main uses was for
numerical analysis. In particular,15

(1) In 1943, Mauchly outlined a solution of the ballistic equations on the ENIAC, in
which each variable had a fixed assignment to a particular register.

(2) Many early machines had addressable storage locations, and (in 1947 or so) pro-
grammers such as von Neumann and Goldstine used to describe the situation
relationally: they would say that the value of a particular mathematical expression
was stored in a particular location. This was hard and confusing to do.

(3) By 1948 this relational description had fallen out of use, and in 1949 Turing explic-
itly equates variables and storage locations (Turing 1989). He also has a dashed
notation for distinguishing the values of a variable before and after an operation.

So, in some form or another, these ideas emerged very early, possibly guided by the
practice of numerical analysis. Algol, which dates from 1960, is generally recognised as
the first programming language which clearly and perspicuously applies these principles.
Even so, it took some time after that for a good formal semantics for these languages
to emerge; O’Hearn and Tennent 1997a,b has the details and many of the papers in the
evolution of the formal semantics, from the definition of Algol 60 onwards.

We should also remark, rather parenthetically, that early computer researchers also used
the mathematical idea of variables: for example, Turing, in 1936, described the implemen-
tation of algorithms in Turing machines by means of a notation which he called ‘machine
tables’, or, for short, m-tables. These tables would describe the behaviour of the machine
when it was presented with a particular symbol on the tape and a particular internal con-
figuration: the behaviour was represented by means of mathematical functions, and these
functions could contain free variables which would hold the value of the currently scanned
symbol. So the idea of the variable—in the mathematical sense—certainly enters here.

5.3. Memory addresses in assembly language
Computers typically hold numbers in memory, and memory locations have addresses,

which are numbers (in this respect, computers differ from Turing machines). But computers
also hold instructions in memory, so these instructions also have addresses. At any rate
since EDVAC, instructions and numbers have been held in memory in the same way (Haigh
et al. 2014b).

14 Both citations are from Campbell-Kelly (1992, p. 21).
15 I am indebted here to Mark Priestley, who, in a private communication, provided most of the following facts.
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These two sorts of addresses are used in the following way:

(1) If we want to perform an operation, such as addition, on data, then we will need
the addresses of the arguments and the address where the result is to be stored.

(2) If we want to execute an instruction, then the CPU must know the address of that
instruction, so that it can fetch it and then execute it. Normally, computers execute
instructions in a sequential order, simply moving from one instruction to the next
in sequence, and this can be done by simply incrementing the address that one
fetches instructions from. However, there are circumstances in which one wants to
execute instructions out of order: for this, one needs to know explicitly the address
of the instruction that has to be executed next.

This set of ideas—that is, that storage locations are persistent, and that they have
addresses—is very early: for example, Williams describes how Newman explained to him
and Kilburn that ‘numbers could live in houses with addresses’ (Copeland 2011, p. 22).

Instruction addresses can be problematic: the main problem is that we may not know,
when writing code, what addresses its instructions are going to have. This may happen
if we are writing a subroutine, designed for repeated execution in conjunction with other
code. Problems then arise with the various forms of out-of-order execution.

Out-of-order execution can happen in two ways. The first is when we simply continue
execution from a particular instruction: this is called a jump. The other is when we have
a subroutine, which is a sequence of instructions with a beginning and end: the behaviour
that we want is that we want to be able to call the subroutine using a particular instruction
(the calling instruction), that the subroutine should then execute, and that, when it gets
to the end, execution should resume from the instruction after the calling instruction (the
address of this instruction is called the return address.

This piece of bureaucracy with addresses was recognised very early on. Turing discusses
how to deal with return addresses for subroutines by putting the return address of the
subroutine into memory:

When we wish to start on a subsidiary operation we need only make a note of
where we left off the major operation and then apply the first instruction of the
subsidiary. When the subsidiary is over we look up the note and continue with the
major operation. (Turing 1946, cited in Priestley 2008, Section 4.5, p. 104)

We should note that, although the precise details of ‘mak[ing] a note of’ have varied,
this is still the same way that the return addresses of subroutines are handled.

There still remains the problem of jumps. Turing, too, worked on this problem: instruc-
tions were to be written in what Turing called a ‘popular’ format, and they were to be
written, one instruction per card, in ‘groups’ (in practice, things like subroutines and the
like: they should be sequences of instructions which could be guaranteed to end up in
contiguous places in memory). Each instruction would have associated with it the name
of the group and its ‘detail figure’, or place within the group. Programs would be con-
structed by taking all the relevant cards (for the main routine, subroutines and so on),
collating them, and then assigning memory locations: from this one could translate from
group name and detail figure to a memory location. Then one would have to replace all the
memory addresses in instructions (which would, of course, have been written in the popu-
lar format with group names and detail figures) with the actual memory addresses. Turing
seems to have envisaged this being done by hand (assisted by punched card manipulation
machines, which were common technology at the time), but he did recognise that it would
be something which could be done ‘within the machine’ (Priestley 2008, Section 4.5,
p. 104).
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The task of showing how such address translation could be done within the machine was
begun by Goldstine and von Neumann (1948); they proposed first loading the program and
its subroutines, and then running a ‘preparatory routine’ which would perform the required
address modification (Priestley 2008, Section 4.5, p. 105). Williams, in 1948, worked out
the details of this, and wrote, for the EDSAC, a sequence of instructions called the initial
orders, which would perform all this address modification.

5.4. Accommodations
We have seen here the problems that were raised by introducing this set of ideas, and

these practices, into computer programming: there is no direct support for these things
in the Turing machine, and there was very rudimentary support, in the form of memory
and instruction addresses, in the early hardware. There were already human practices—
namely those developed for numerical analysis—which computers needed to support, and
the solution was to develop coding languages and practices which were not too distant from
what people were already doing by hand, and to fill the gap between human coding and
machine execution by a process of translation. This process of translation—from human-
written code to machine code—is one of the first appearances of our three-component
system: hardware, human intellectual practices, and software mediating between them.

One of the important practices in this development was what is now called code reuse:
the ability to write a single piece of code—a subroutine, or the like—and to be able to
use it in a variety of contexts. From this comes the problem that we may not know, ahead
of time, what the addresses of the code might be: so, consequently, we need to be able
to manipulate code addresses in a systematic way. Turing has a very concrete description
of the process, but the requirement is quite abstract: we know that our subroutine will be
given some particular area of memory to work in, but we will not know ahead of time (and
should not) precisely which area of memory it will be. This can be formulated mathemat-
ically, although the formulation is not trivial: O’Hearn and Tennent 1997c, p. 115 has a
formulation in terms of possible world semantics (the possible worlds are given by col-
lections of ‘store shapes’). Despite the mathematical complexity of this concept, it does
emerge, fairly naturally, from a requirement generated by the practice of programming, the
requirement of code reusability.

Thus, though the Turing machine was invented as a model of computation, it was
invented at a time when the only computation was human computation: there is noth-
ing in the mere idea of a Turing machine which would by itself give rise to the elaborated
human practice of programming which we describe in this article. Turing, in fact, was very
interested in the practical problem of automating computation, and so he did a lot of work
on this elaborated human practice, as we have seen in Section 5.1; but in another possible
world he could have simply invented the Turing machine, written Turing 1937, and left it
at that.

6. Modern hardware
In this section, we will look at how modern hardware typically works. One of the main

problems here is that of speed disparity: the CPU of a modern computer executes a basic
instruction in less than a nanosecond (complex instructions, like multiplication, might of
course take longer), whereas hard disk access will take tens of milliseconds. RAM access
is intermediate between the two. The ratio between CPU speed and hard disk speed is
somewhat over a million. If the CPU had to wait milliseconds every time it needed data
for an instruction, then computers would be much slower than they actually are. There are
several technologies that we can use to deal with this. None of them is directly under the
control of applications or systems programmers: they are designed by chip designers, they
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(hopefully) make the hardware run faster, and they are transparent: that is, programmers
simply write the instructions they would have written anyway, but the computer executes
them faster than it would have done without caching, pipelining, and so on.

6.1. Caching
This is the strategy of fetching data in relatively large units, and storing it in fast mem-

ory near where it is to be used. For example, modern CPUs have caches where they
store data that they get from RAM: they fetch data in large contiguous blocks, store it
in their cache, and, when they need more data from RAM, they check the cache first
(Hennessy and Patterson 2014, Section 5.3, pp. 383ff). This generally works: with mod-
ern hardware, CPUs will find the data in the cache about 90% of the time (Hennessy and
Patterson 2012, Stallings 2013).

The reason why caching works, when it works, is what is called data locality (Hennessy
and Patterson 2014, Stallings 2013). This is the idea that data which are relevant for a
particular calculation is usually held contiguously: if we have large amounts of data, then
it will generally be in an array or some large data structure of that sort, and that data
structure will (hopefully) be held contiguously. So if we are iterating along an array, and
if we cache the array in contiguous blocks, then most data will be found in the cache: the
only reason to go to RAM for data is when we have already iterated through the data in the
cache.

Similarly, instructions are stored in RAM in the order that they occur in the program,
and they are generally executed in that order too. So caching tends to win here also.

However, data locality may fail in both of these scenarios. Two-dimensional arrays
(i.e. arrays with two indices) can be thought of as big matrices, and there are two ways
of iterating over them: in the first, you select column 0, iterate over that, then select col-
umn 1, iterate over that, and so on. For the other way of iterating, you do the same thing
but with rows rather than columns. Now if you write array code in Java, it turns out that
one of these ways gives you data locality but the other way does not,16 so there is a large
performance penalty for doing it one way rather than another.

Consequently, although there are large gains to be made by caching, they are not auto-
matic: both for instructions and for data the gains depend on the statistical character of the
code or data concerned.

6.2. Pipelining
Instruction execution in a CPU is generally performed in several stages: first the instruc-

tion is fetched from RAM, then the CPU decides what sort of instruction it is (which affects
whether the instruction needs data, etc.), then the instruction is executed, and finally the
result is written back to RAM. These stages are generally performed by different parts of
the CPU, but they each depend on the previous stage having been performed. But there
is nothing wrong with executing stage 1 for a particular instruction while the CPU is
executing Stage 2 for the previous instruction: this is called pipelining (Hennessy and
Patterson 2014, Section 4.5, pp. 272ff, Stallings 2013, pp. 517ff).

So, if we have a sequence of instructions like this

i1;
i2;
i3;

...

16 If you have an array a[i] [j], then you should iterate over i in the inner loop and over j in the outer loop, rather than vice

versa.
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then we could have a pipeline which, at successive times t1, t2, t3, was doing the following:

t1 stage 1 of i1
t2 stage 1 of i2 stage 2 of i1
t3 stage 1 of i3 stage 2 of i2 stage 3 of i1

...

What can go wrong? Suppose, on the other hand, we have a loop:

for(i=0;i<4;i++) {
i1;
i2;
i3;

}
i4;

so that we will execute instructions in the following order:

i1 i2 i3 i1 i2 i3 i1 i2 i3 i1 i2 i3 i4.

The pipeline will fill up with, successively, i1, i2, i3, and then (because it is the next
instruction in the listing) i4. However (unless this is the last time round the loop), the next
instruction to be executed after i3 is i1: but we cannot in general tell whether we are
going round the loop again until the last instruction of this loop has been executed. And
so, whenever we get to the end of the loop, we have to wait until the pipeline empties itself
and then we have to start refilling the pipeline from i1

Because of this, modern CPUs generally do branch prediction: that is, at places where a
branch might happen (end of a for loop, beginning of a while loop, and so on) they try to
guess what branch might be taken, and keep filling the pipeline accordingly. For example,
it is generally a good idea to guess that, when you get to the end of a for loop, you will
continue execution from the beginning of it: this is because most loops get executed more
than once, and often much more than once (there is no point in having them otherwise), so
that you will generally win by guessing that way.

Branch prediction, then, is like data locality: it is a statistical matter, and depends on
code being written in a certain way. It would certainly be possible to write code in such
a way that it would break pipelining by forcing branch prediction to misbehave, but it
would probably be quite hard to do, and it would need some specialised knowledge of
what hardware it was to be run on (how many stages in the pipeline, some details of its
branch prediction, and so on).

6.3. Registers
It has always been recognised that it was advantageous to have fast memory locations

inside the CPU, and that these could be used for storing frequently used data. These loca-
tions are called registers, or accumulators, and have been part of computer design since the
early days: e.g. the ENIAC—which started running in 1945 or so—had 20 accumulators
(Priestley 2008, p. 61).
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Registers can often achieve a considerable speedup. For example, if we have a loop like
this:

for(i=0;i<100;i++) {
i1;
i2;
i3;
...

}

then we could, theoretically, read the loop variable i from the hard disk every time it was
to be used, and write it to hard disk every time it was to be updated, but that would be
very wasteful: the sensible thing to do is to keep i in a register, initialise it to zero when
we start executing the loop, and to release the register after the end of the loop: it need
never even be stored in RAM. Assembly code allows access to registers: in fact, many
assemblers (MIPS, for example) only allow arithmetic operations between the contents of
registers, and only allow the result to end up in a register. There are other instructions for
reading data from RAM to a register (loading the data) and for writing data from a register
to RAM (storing the data). This is the so-called load-store paradigm.

Now because they involve RAM access, load and store instructions are compara-
tively slow, so there is a great deal to be gained by eliminating them as much as possible.
For example, a store of data from a register to a location, followed by a load of the
same data to the same register from the same location, can generally be eliminated; the
same situation, only with different registers, can generally be replaced by simply moving
data from one register to another, and so on. But a given CPU will only have a certain
number of registers, so one will inevitably encounter situations where one has to store data
in a particular register in order to make room for new data. This is the problem of register
allocation: how to decide in what registers old data should be replaced by new data.

Now compilers, from languages such as C or Fortran, would generally emit assembly
code for the relevant architecture, which would then be assembled and run. It used to be
the case that human programmers could generally write better and more efficient assembler
than compilers could produce (better register allocation, and so on): this is no longer the
case, because of progress with register allocation algorithms. Thus, programmers’ contact
with modern computers generally does not reach inside the CPU, and, in particular, it
generally does not deal with registers.

6.4. Hard disks
Hard disks are, as is well known, composed of a stack of rotating magnetic platters

together with a set of read/write heads which are mounted on an arm that can move the
heads in or out over the platters (Hennessy and Patterson 2014, Stallings 2013). The sur-
faces of each platter are divided into concentric tracks: that is, if the heads are at a fixed
position, they will read or write from a particular track on each surface as the disks go
round. The set of all of the tracks which are under the heads with the arm at a fixed position
is called a cylinder. Each track is divided into sectors.

Thus, to access the data in a particular sector, the disk must do the following:

(1) move the heads to the appropriate cylinder,
(2) wait until the appropriate sector rotates under the head, and
(3) read or write the data from that sector.

The average time for (1) is between 3 and 13 ms, and the average time for (2) is about
5 ms: these are comparatively long times in computer terms. It is obviously advantageous
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to take advantage of contiguity: that is, if we successively read data, it would be best if it
came from the same cylinder.

However, this is very difficult to achieve. Modern hard disks have hardware in them
called disk controllers, which do several things. One thing they do is to cache data as they
read it from the disk or before they write it to the disk: because they do this, they can re-
order reads and writes in order to minimise head movement. They also do error checking
(they record extra check bits with the data in order to detect errors if they occur), they
monitor errors, and they can move data off a sector and onto another if they think a sector
is deteriorating. Because of this, it is very hard to tell whether data is located contiguously
or not: blocks of data could start off close to each other, but end up distant because of data
movement. None of this is under the control of programmers, and so optimisations that
used to be possible are now no longer possible. On the other hand, disk are now genuinely
faster and more reliable, due to more intelligent disk controllers, so this is probably a net
gain.

6.5. Accommodations
We have seen that the programmer sees a particular view of the workings of a computer:

the programmer can load and store data from the RAM to the CPU, can work on it in the
CPU, and gets a generally sequential view of the execution of instructions. The program-
mer can also access hard disks, and these hard disks are organised in cylinders and tracks
and sectors. None of this is strictly speaking true: data are cached between RAM and the
CPU, and in the disk controller. Instructions are not strictly executed one at a time, but
they overlap due to pipelining. And the hard disk geometry as seen by the programmer is
an idealisation: data movement makes it very difficult to optimise the location of data on a
hard drive.

So, again, we have a rather complex system. The programmer has a rather simplified
view of the hardware: it is one where the speed disparities are not a problem, in which
instructions are executed sequentially and one at a time, and in which hard disk access
generally works unproblematically. That programmers can get away with this depends on
a great deal of carefully optimised hardware: caches, pipelines, disk controllers, and the
like. So programmers write programs, these programs are executed on a machine which
does all sorts of clever things to maintain the rather fictitious view of itself that it presents to
programmers, and they are, on the whole, executed quite fast. So this is what the machine
does for its human users.

But, also, the machine depends in a certain way on its human users. Most of these opti-
misations are not guaranteed to work—that is, they are not guaranteed to run programs
faster—but only work given programs and tasks with a particular statistical distribution.
Optimisation is generally done to make the common case (i.e. what programmers mostly
want done) fast. So human behaviour has an effect on this: the things that people want to
do are usually what is optimised for (computer games are a case in point). Given all this,
it is not surprising that computer benchmarks are a contentious, and ultimately political,
subject (Hennessy and Patterson 2014, Section 1.9, pp. 46ff).

7. Semantics
Consider what we have seen of the development of programming languages, and par-

ticularly what we have seen of the idea of a variable. This was, we argue, introduced into
the world of computers because it was implicit in the practice of numerical analysis: it was
introduced in a rather ad hoc form, but gradually took on shape, first with the design of lan-
guages (such as Algol) which supported it perspicuously, and then with the development
of semantics for those languages (and, following on from that, with the development of
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program checking tools and other such infrastructure). These developments can be consid-
ered as the attempt to start with a partially theorised practice and then attaining reflective
closure: developing a theory which rationalises and supports the practice. We should notice
that reflective closure can be very difficult to achieve: for example, nobody seems to have
realised that programs would take a good deal of debugging until they actually tried writing
and running programs on real computers, even though, before this, many people had quite
a good understanding of a good deal of the theory of computation (Campbell-Kelly 1992,
p. 22): learning this took bitter experience. If, in addition, we want to formulate our insights
mathematically (perhaps in order to do formal verification), then there might be a signifi-
cant gap between having the conceptual insight and being able to develop the mathematics
to express it: we see this, for example, with the formulation, which we have described
above, of the requirements for code reusability and their eventual reformulation in terms
of possible world semantics.

7.1. Compositionality
Since there have been programming languages, there has been work on their semantics:

this is not surprising, firstly because many of the people who developed programming
languages were logicians and thus naturally thought in terms of semantics, and secondly
because computer scientists wanted to do things like prove that programs ran correctly,
which is a question which could conceivably be answered by investigating the semantics
of programs.

This proved to be a difficult problem. As Priestley remarks, ‘semantics for logic are
typically compositional’ (Priestley 2008, p. 113): that is, logical formulae are generally
built up from smaller components, and we can get the semantics of the larger pieces (i.e.
the mathematical objects they stand for) by composing the semantics for smaller pieces. It
would be natural to try to define a semantics for programming language in the same sort of
way. However, it is not straightforward: consider, for example, one of the simplest ways of
combining commands in programming languages, namely concatenating them:

command1
command2

which says that command 2 should be executed after command 1. What mathematical
objects correspond to these commands? How do we combine them?

It was some time before good answers to these problems emerged: decisive
breakthroughs were made by Strachey and his school in Oxford in the 1970s
(White 2004, Stoy 1977). These results did not merely allow a mathematical analysis,
but they led towards an understanding of the space of possible programming languages.
In particular, they put into perspective the so-called functional languages: these are lan-
guages in which variables have fixed values, that is, their values can only be defined and
read, but not updated. Variables in these languages, then, are much more like mathemat-
ical variables. Consequently, these languages have good mathematical properties, which
made their semantics quite perspicuous (White 2004, Section 3.2). In particular, Abram-
sky (1997) has produced a semantically based taxonomy of a large collection of languages,
based on functional programming but with added features; the semantics is based on the
game-theoretic approach to logic pioneered in Lorenzen 1984.

7.2. Accommodations: the Kepler problem
We should notice that the benefits of this reflective closure – the development of an

abstract formal semantics for programming languages – depend on having programming
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languages which are amenable to such analysis. Here is an example of the use of such
formal methods, together with the problems that might arise.

There is a problem, traditionally called the Kepler problem, which has to do with packing
spheres in three-space: the problem is to discover what the arrangement is that leads to
the greatest density (or, in practice, to show that the obvious arrangement leads to the
greatest density). The problem was posed by Kepler in 1609: in 1998, Tom Hales solved the
problem by producing a proof which reduced the problem to checking that all the members
of a finite, but large, set of geometrical configurations possessed a certain property, and by
writing software which checked the geometrical configurations. He submitted his work to
the Annals of Mathematics, a journal which has a policy of checking, in detail, the proofs
in submitted papers. They checked his proof, but then had to deal with his computer code,
which was written in C++: the question was whether the code did what he claimed. The
Annals appointed a committee of logicians to try to formally verify his code: by 2003, such
verification had still not been achieved, and the Annals decided to publish the proof and
have the computer code published elsewhere (MacPherson 2005, Thomas 2004).

Faced with this impasse, a group of mathematicians and computer scientists launched
Project Flyspeck (The Flyspeck Project 2014a) with the aim of recomputing Hale’s original
calculations in such a way that they could be formally verified. They used, instead of C++,
a functional language called Objective CAML, and they used a proof assistant called HOL
Light which was very well integrated with CAML. They also checked the workings of
HOL Light by starting with a very small and perspicuous core, which they then extended
in stages, checking the correctness of the extensions by using the core.17 To quote from the
Flyspeck documentation,

The system is built on a small kernel, and the type checking insures that no fatal
bugs can occur outside the kernel. That is, if you leave a bug in your code, the
worst that can happen is that you will fail to prove a theorem you hoped to prove.
You can never put a bug in your code that yields a false statement (The Flyspeck
Project 2014b).

The calculations were then recomputed, and the proof verified, in 2014 (The Flyspeck
Project 2014a).

So why did Project Flyspeck succeed, when the previous attempt to verify Hales’ calcu-
lation had failed? There are several differences, one of which is that the calculations were
performed in a language which was designed, inter alia, for ease of verification: by con-
trast, C++ is a language which performs well but which seems to be hard to understand
in any formal sense.

Why should C++ be different from CAML? One of the main differences is that C++
is imperative, whereas CAML is functional.

In an imperative programming language, a term C is said to interfere with a term
E if executing (or, as appropriate, assigning to or calling) C can affect the outcome
of E. For example, command x := a interferes with expression x + 1, but not vice
versa. . . .

J.C. Reynolds has provided a more refined analysis. He argues that conven-
tional procedural languages are problematical precisely because they permit covert
interference, that is, interference that is not syntactically obvious. (O’Hearn
et al. 1997)

17 Note that this bootstrapping procedure could, together with the philosophical orientation called reliabilism, form the basis of

a response to the DeMillo–Perlis attack on the very idea of formal verification described in MacKenzie 2001, Chapter 6.
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So C++ suffers from interference (and, in practice, covert interference), and this makes
it a hard language to verify because of such interference: in verifying the effect of a com-
mand, one has to consider not just its overt effect, but also any covert effects it might have
on variables that interfere with the ones that it is acting on. CAML does not suffer from
this, which makes it easier to verify.

What are the consequences of this for our model? We recall that this work on formal
verification can be regarded as reflective closure, that is, as the rational analysis of a pre-
existing practice. Now reflective closure works both ways: it can, of course, simply tell us
something about our practice, but it can also prompt us to change our practice in such a
way that it becomes more reliable or more perspicuous. And this is what seems to have
happened here.

8. Epilogue: parallelism
Over the last several decades, there has been a remarkable trend: computers have become

faster and more powerful, while becoming, if anything, cheaper (Hennessy and Patter-
son 2014, Stallings 2013). This now seems to be coming to an end: CPU clock speeds are
not increasing any more. Rather, hardware manufacturers are turning to multicore hard-
ware,18 that is, hardware designs which have more than one processor on a chip (Hennessy
and Patterson 2014, Stallings 2013). This change to multicore hardware means a change
from serial to parallel processing, that is, processing in which many computations can go
on at one time. This is a fundamental change, the emotional impact of which is perhaps
best captured in James Mickens’ essay ‘The Slow Winter’ (Mickens 2013).

Why might this be so fundamental? Many early computers, such as Turing’s ACE, were
capable of some sort of parallelism. This may indeed have seemed natural: Grier (2011)
argues that the early culture of programming was strongly influenced by the planning of
industrial operations in factories: similar ideas were certainly developed slightly later by
Simon (Heyck 2008a,b) and by the cybernetics community (Sjoblom 2011). However, there
seems to have been a general pressure towards strictly serial computers: programmers
should be able to write a series of instructions and be assured that the machine would
execute them in that order. Early computers quite often had some capacity for parallel
programming but programmers—and competent programmers at that—generally found
this very difficult to cope with: as Eckert writes of programming the ENIAC,

In thinking out the various operations of this machine, if they can be thought out
in a purely serial fashion, it is not necessary to worry about any irrelevant timing
between the two steps. . . . The human brain does not think in several parallel
channels at the same time: it usually thinks these things out step by step. Therefore,
in all ways, it is found exceedingly desirable to build the machine so that only
single steps are performed at any time. The ENIAC is usually used in this way.19

Note ‘usually’: it was obviously possible to use the ENIAC in a non-serial way.
At that period, this issue was expressed in a discussion of the merits of ‘cen-

tralised’ versus ‘decentralised’ architectures: ‘centralised’ architectures are those ‘in
which the results of all calculation pass through a single accumulator’ (Good, quoted in

18 This whole historical development is related in some way to Moore’s law (Schaller 1997), that is, the observation that the

number of transistors per chip has been doubling every eighteen months since 1970 or so. The change to multicore hard-

ware means that this increase can continue, although, since each chip now has several cores (i.e. processors), the number of

transistors per core has levelled off. Similarly, the clock speed of CPUs has levelled off at about 2–4 GHz.
19 J. Presper Eckert, in a lecture on ‘A Preview of a Digital Computing Machine’ (1946), cited in Priestley 2008, p. 94; see also

Haigh et al. 2014b, pp. 22ff.
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Copeland 2011, p. 23). By contrast, decentralised machines are those—such as Turing’s
ACE – in which calculations could be performed along a variety of hardware paths.20

For one reason or another, centralised designs won out, and programming has generally
remained quite serial ever since; there are niches in which parallel programming is used
(mostly out of necessity), but, for example, the average undergraduate computer science
curriculum has very little parallel programming in it.

8.1. Accommodations
It would be easy to read this story as simply driven by technological necessity, but there

is also a more subtle backstory. It is still certainly true that parallel programming is dif-
ficult: Brooks (1997, p. 332) writes ‘It is well known that parallel programs can be hard
to reason about, because of the potential for undesirable interference between commands
running in parallel’. Nevertheless, a good deal of theoretical work has been done on paral-
lel computing, some of it quite successful. Functional languages seem to be well adapted
for parallel computation, precisely because they are not susceptible to interference. So an
obvious solution might be to change our practice and start using functional programming:
and, to an extent, this is happening. Universities are starting to teach functional program-
ming, or are resuming the teaching of it (my university, for example, has recently started
teaching functional programming again after about a decade in which it was not taught).

However, functional languages are not well adapted to all problems, which leads one
to ask whether we can change our practice in a more nuanced way than adapting func-
tional languages across the board. In fact we can: for example, there is a framework called
Hadoop,21 which is used for the parallel processing of big data. Hadoop is written in the
imperative language Java, but is based on a functional programming paradigm called map
reduce (Lin and Dyer 2010). And it turns out that, provided that people program with
Hadoop in a fairly disciplined way—that is, if they do not use imperative constructs in sen-
sitive contexts—they can get the advantages of functional programming without having to
learn to cope with purely functional languages.

So this constitutes a successful accommodation: it is not the puritan functional program-
ming paradise, in which everyone would program in beautiful functional programming
languages. It is also a rather niche application, and it does not tell us much about how to do
parallel programming in other contexts. But it is an example of the sort of accommodations
that people make in order to deal with the technology that they have available, and the sort
of human systems that they have available, based on the insights that the available theory
can give them. And, as well as the purely technological issues, some of the issues at play
here are how the humans make sense of the technology that they have, and how they adapt
the technology so that they can make sense of it. This, of course, raises further problems,
but arguably this evolution (from imperative programming to functional programming to
the use of functional idioms in imperative languages) leaves the technological—social
system slightly further along than it was previously.

So the expository arc of this paper has shown how particular programming
phenomena—those having to do with the idea of a variable, and with memory addresses—
started with a practice rooted in pre-electronic computation, which then got imported into

20 Turing’s design was not only decentralised, but also intensional: instructions did not access memory directly, but only via a

‘system of interconnections and gates’, which Turing called a tree. Brooks 2012 describes the ACE as ‘a beast to program’.

Kilburn, responsible for much of the design of the Manchester Baby, was absolutely certain that ‘my computer was not going

to look like that’, and he used, rather, Newman’s simpler idea of ‘numbers being identified by the address of the house in

which they were placed’.
21 See http://hadoop.apache.org/.

http://hadoop.apache.org/
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computer science and gradually rationalised (first with suitable languages, then with math-
ematical semantics). The rationalisation seemed to suggest a change to the practice (namely
the adoption of functional languages instead of imperative languages): this change proved
very unpopular on the brute human level. And, finally, there are suggestions that appro-
priate compromises may be emerging, allowing programmers to use functional idioms in
languages that they feel comfortable with.

This raises a methodological problem. We started with the observation that the commu-
nities who program and design computers are constantly engaged in a process of adjusting
matters so as to constitute a coherent view of the world; this naturally led into a rather
ethnomethodological view of the subject. We have seen, however, that this situation is not
static: these are practices which are evolving, in many ways as a result of conscious and
reasoned decisions taken in order to remedy perceived defects of the then current state
of affairs. These changes are changes not solely in actual practices and artefacts but also
in norms: for example, the evolution of programming languages was partly a matter of
becoming clear about what makes a good programming language, and what we should aim
for when we design them. Some of these norms, as we have seen, may end up inscribed
in hardware. So, our methodology maybe ought to reflect this evolutionary aspect of the
history. Something like the critical theory of Honneth 2014, with a systematic account of
the connection between social institutions and the implementation of norms, may well be
appropriate: the historical data that we have discussed should be a rich source for the devel-
opment of such a critical theory of computer technology and, more generally, of cognitive
science as a whole.
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